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Let X be a compact Hausdorff space and C(X) be the space of continuous
real functions on X. For h a continuous function from X into the extended
real line, define

II h II = sup {I h(x) 1 : x EX}.

Let {~l ,... , ~n}, {!fl ,... , !fm} be linearly independent subsets of C(X) and
define

R(A, x) = peA, x)/Q(A, x) = f ak~k(x)/f an+/c!f/c(x).
k~l /c~l

Let 9 = {A : Q(A, .) > OJ. Let w be a continuous mapping of the Cartesian
product of X and the real line into the extended real line. Approximations
are of the form

F(A, x) = w(x, R(A, x»)

The approximation problem is: GivenfE C(X), to find a coefficient vector
A * minimizing e(A) = Ilf - F(A, ')11 over A E9. Such a coefficient vector A*
is called best and F(A *, .) is called a best approximation to f on X.

w is a transformation operator. The first study of transformations was
that of the author [2], who studied transformations of ordinary rational
functions on an interval. Kaufman and Belford [6] have studied trans­
formations of alternating families. Williams [9] has studied some special
cases of transformations of Haar subspaces on an interval.

PRELIMINARIES

We will call H' a weak ordering function if for all x E X, either

(i) w(x,') is constant, or

(ii) w(x,·) is monotonic and str.ictly monotonic where it is finite.
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If (i) does not occur, H' is called an ordering junction.
Ordering functions of near full generality were first considered by Kaufman

and Belford. Let a be a continuous mapping of the real line into the extended
real line which is monotonic and strictly monotonic where it is finite. Let r
be an element of C(X). If r has no zeros, w(x, y) = r(x) u(y) is an ordering
function. If a does not take infinite values, w(x, y) = rex) a( }') is a weak
ordering function. Special cases where II' is of this form have been considered
by the author [2, 5J and Williams [9]. We assume henceforth (unless stated
otherwise) that II' is a weak ordering function.

Allowing (i) to happen may seem to the reader to be of no practical
utility. However, the approach of Williams [9J to curve fitting does involve
transformations which often map into zero at some points x of X.

To avoid trivial cases, we assume henceforth that

9' = {A : A E:!J, il F(A, ')1 < ':>'J.I

is nonempty,.which implies that unbounded approximations cannot be best.
Part of the analysis in this paper is in terms of the betweeness property,

introduced by the author in [3J.

DEFINITION. A subset G of C(X) has the betlveeness property if for given
go , gl E G, there is a A-set {hA} E G such that ho = go , hI = gl , and for all
x E X, h,\ is either a strictly monotonic continuous function of ,\ or a constant,
O~A~1.

The family {R(A, .) : A E JP} has the betweenness property [3, p. 152].

LEMMA l. Let G be a subset of C(X) IFith the betweenness property. Let ji'

be a IFeak ordering function. Let

1!{G) = {h : h = II-{-, g), g E G,:I h ,i <:x::j.

Then I\'(G) has the betweenness property.

CHARACTERIZATION OF BEST ApPROXIMATIONS

Let A1(A) = {x: 11(x) - F(A, x)1 = e(A)}. By continuity of if - F(A, -)1
into the extended real line and compactness of X, 11,f(A) is a nonempty set.

THEOREM 1. A necessary and sl({ficient condition for A to be best, where
o < e(A) < OJ, is that no BEY' exist with

(F(B, x) - F(A, x» (f(x) - F(A, x) > 0 X E AleA).

This follows directly from the corollary to Theorem 1 of (3].
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To get more convenient results, we need to consider the direction of
monotonicity of w. Define sex) = 0 if w(x, .) is constant, sex) = 1 if w(x, .)
is monotonic increasing, and sex) = -1 if w(x, -) is monotonic decreasing.

COROLLARY. A necessary and sufficient condition that A be best, where
o < e(A) < 00, is that no B E?P' exist with

sex) [PCB, x) Q(A, x) - peA, x) Q(B, x)][f(x) - F(A, x)] > 0,

Proof For BE ?P',

X E M(A).
(1)

sgn(F(B, x) - F(A, x»

= sex) sgn(R(B, x) - R(A, x»

= sex) sgn([P(B, x) Q(A, x) - peA, x) Q(B, x)]/[Q(A, x) Q(B, x)]

= sex) sgn[P(B, x) Q(A, x) - peA, x) Q(B, x)].

COROLLARY. A necessary and sufficient condition that A be best, where
o< e(A) < 00, is that no B exist with (1) holding.

Proof If such B does not exist, apply the sufficiency part of the previous
corollary. If such B does exist, let C,I = A + AB. For all A > 0 and suffi­
ciently small, C,I E ?P'. (1) is satisfied with B = C,I' Apply the necessity part
of the previous corollary.

Associated with the parameter A we have the linear space

SeA) = {peA, .) Q(B, .) - Q(A, .) PCB, .) : BE E nHn},

of dimension at most n + m - 1 [1, p. 159].
Let {B1 ,',., Bp } be a basis of SeA) and

tI>(x) = (BtCx), ... , Bix).

By the theorem on linear inequalities [1, p. 19], we have

COROLLARY. A necessary and sufficient condition that A be best, lvhere
o < e(A) < 00, is that 0 is in the convex hull of

{(f(x) - F(A, x» sex) tI>(x): x E M(A)}.

CONVEXITY OF THE SET OF BEST PARAMETERS

Let O{* be the set of best parameters. In the following lemma we do not
assume that w is a weak ordering function.

LEMMA 2. (J{* is convex if w(x, .) is monotone for all x E X.
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Proof Let A, BE ct*. Consider the parameter C = i\A + (I ~ .\) B for
given.\ in (0, I). We have for given x E X, R(C, x) being between R(A, x) and
R(B, x) [3, p. 152]. Hence F(C, x) is between F(A, x) and F(B, x) andj(x) ­
F(C, x) is between f(x) - F(A, x) and ftx) - HB, x). Thus e(C):'( max
{etA), e(B)}.

SETS ON WHICH ALL BEST ApPROXIMATIONS AGREE

The following terminology is due to Lawson [7, pp. 22-23].

DEFI',,'ITIOK A subset Y of X is an error-determining set (ED set) for I if

inf {sup {, f(x) - F(A, x)1 : x E X} : A E ~1')

= inf {sup {I f(x) - F(A, x); : x E 1"1 : A E {:7».

An irreducible error-determining set (lED set) for f is an ED set for f which
has no proper subset which is an ED set for f

LnrMA 3. An lED set for f always exists, contains at most i1 --L rn points,
and is a subset of M(A) for all A best.

The above lemma is a consequence of the last corollary to Theorem I and
the theorem of Caratheodory [I, p. 17].

LHll\[A 4. Best approximations to f agree on any lED set forf

Proof Let A, B be best to f and let Y be a set on which F(A, .) and
F(B, .) differ, say at the point x. By convexity of the set of best coefficients,
(A + B)ll is also best. Further x tt M«A ~ B)/2). Hence x cannot be in an
lED set forr.

UNIQUENESS

DEFINITION. X is ajixedpoint of F if all approximants take the same value
at x. Let V be the set of fixed points of F. By continuity of 11', V is closed. Let
C( v, X) denote the set of continuous functions taking the same values on V.

THEOREM 2. Let F(A, .) be best tof Let SeA) be oldimension i on X '"'-' V
and a Haar subspace of dimension Ion an lED set Yfoi' f Let 5 nor mnish on
Y. Then Y has exactly I + 1 points and F(A, .j is uniquely best lor

The proof is similar to that of Theorem 3 of [5], with the corollaries to
Theorem 1 being used.
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COROLLARY. Let F(A, .) be best to f Let SeA) be ofdimension Ion X""' V
and a Haar subspace of dimension Ion M(A). Let s not vanish on M(A). Then
F(A, .) is uniquely best to f

THEOREM 3. A necessary and sufficient condition that F(A, .) be uniquely
best when it is best tofE C(V, X) is that SeA) is a Haar subspace on X,,-, V.

Proof Let I be the dimension of SeA) on X""' V. Sufficiency. If f =

F(A, '), F(A, .) is uniquely best. If f # F(A, '), M(A) n V is empty and we
apply the previous corollary. Necessity. We combine the nonuniqueness
arguments of [5, Theorem 3] and the nonuniqueness arguments for
generalized rational approximation to get a pair of approximations without
zero-sign compatibility [3, 4].

In the classical case where IV is the identity transformation w(x, y) = yand
we are approximating by R, the only fixed points of F are points x such that
P(', x) = 0, and C( V, X) is the space of continuous functions vanishing on V.
We obtain the

COROLLARY. A necessary and sufficient condition that R(A, .) be uniquely
best when it is best to f E C(V, X) is that SeA) be a Haar subspace on X r-J V.
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